12.2: Fourier Series

This definition allows us to construct a space of functions out of two simple functions. Now equipped with our new machinery we can derive a series representation that is ideal for periodic functions. We did this in class, but here I shall just remind you of the formulas:

Fourier Series.

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n\pi x}{L} \right) + b_n \sin \left(\frac{n\pi x}{L} \right) \right];
\]

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n\pi x}{L} \right) dx, \quad b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) dx
\]

Now lets do some problems. While a lot of these want plotting, we did them in class, so I won’t show them here, but make sure you know how to plot these things.

Ex: Find the Fourier Series of the function

\[
f(x) = \begin{cases}
1 & -L < x < 0, \\
0 & 0 \leq x < L;
\end{cases}
\]

(a) Sketch it!
(b) We first do \(a_0 \)

\[
a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx = \frac{1}{L} \int_{-L}^{0} dx = 1.
\]

Notice that we always do \(a_0 \) separately. Then we do \(a_n \)

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n\pi x}{L} \right) dx = \frac{1}{L} \int_{-L}^{0} \cos \left(\frac{n\pi x}{L} \right) dx = \frac{1}{n\pi} \sin \left(\frac{n\pi x}{L} \right) \bigg|_{-L}^{0}
\]

Finally, for \(b_n \)

\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n\pi x}{L} \right) dx = \frac{1}{L} \int_{-L}^{0} \sin \left(\frac{n\pi x}{L} \right) dx = -\frac{1}{n\pi} \cos \left(\frac{n\pi x}{L} \right) \bigg|_{-L}^{0}
\]

\[
= -\frac{1}{n\pi} + \frac{1}{n\pi} \cos(n\pi) = \begin{cases}
-1 + (-1)^n & n \text{ odd, i.e. } n = 2k + 1; \ k = 0, \pm 1, \pm 2, \ldots \\
-2 & n = 2k; \ k = 0, \pm 1, \pm 2, \ldots
\end{cases}
\]

Then our Fourier series becomes

\[
f(x) = \frac{1}{2} - \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{1}{2k+1} \sin \left(\frac{1}{L} (2k+1) \pi x \right).
\]

Ex: Find the Fourier Series of the function \(f(x) = x^2 / 2 \) on \([-2, 2]\)

(a) Plot it!
(b) Again, we do \(a_0 \) first

\[
a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx = \frac{1}{2} \int_{-2}^{2} x^2 dx = \frac{x^3}{12} \bigg|_{-2}^{2} = \frac{4}{3}.
\]
Now to do a_n we need to do by parts twice, which you can do yourselves. I’ll just give the final form of the antiderivative.

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L} \right) \, dx = \frac{1}{2} \int_{-2}^{2} \frac{x^2}{2} \cos \left(\frac{n \pi x}{2} \right) \, dx = \frac{1}{2} \int_{0}^{2} \frac{x^2}{2} \cos \left(\frac{n \pi x}{2} \right) \, dx$$

$$= \left[\frac{2x^2}{n \pi} \sin \left(\frac{n \pi x}{2} \right) + \frac{8x}{(n \pi)^2} \cos \left(\frac{n \pi x}{2} \right) - \frac{16}{(n \pi)^3} \sin \left(\frac{n \pi x}{2} \right) \right]^2_{0} = \frac{8}{(n \pi)^2} \cos(n \pi) = (-1)^n \frac{8}{(n \pi)^2}.$$

For b_n we get

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L} \right) \, dx = \frac{1}{2} \int_{-2}^{2} \frac{x^2}{2} \sin \left(\frac{n \pi x}{2} \right) \, dx = 0.$$

because we are integrating an odd function on a symmetric interval. Then our Fourier series is

$$f(x) = \frac{2}{3} + \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos \left(\frac{n \pi x}{2} \right).$$

15) This is a book problem.

First we find a_0

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} e^x \, dx = \frac{1}{\pi} e^x \bigg|_{-\pi}^{\pi} = \frac{1}{\pi} (e^{\pi} - e^{-\pi}) = \frac{2}{\pi} \sinh \pi$$

Then we find a_n via “by parts” using $u = \cos n x \Rightarrow du = -n \sin n x \, dx$ and $dv = e^x \, dx \Rightarrow v = e^x$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} e^x \cos n x \, dx = \frac{1}{\pi} \left[e^x \cos n x \bigg|_{-\pi}^{\pi} + n \int_{-\pi}^{\pi} e^x \sin n x \, dx \right]$$

Then we do another by parts: $u = \sin n x \Rightarrow du = n \cos n x \, dx$ and $dv = e^x \, dx \Rightarrow v = e^x$

$$\frac{1}{\pi} \left\{ e^x \cos n x \bigg|_{-\pi}^{\pi} + n \left[e^x \sin n x \bigg|_{-\pi}^{\pi} - n \int_{-\pi}^{\pi} e^x \cos n x \, dx \right] \right\}$$

$$= \frac{1}{\pi} \left\{ (e^\pi - e^{-\pi}) (-1)^n - n^2 \int_{-\pi}^{\pi} e^x \cos n x \, dx \right\} = (-1)^n \frac{2}{\pi} \sinh \pi - \frac{n^2}{\pi} \int_{-\pi}^{\pi} e^x \cos n x \, dx$$

Now we notice that we have $\int_{-\pi}^{\pi} e^x \cos n x \, dx$ on both the right and left hand sides, so we can combine them,

$$\frac{n^2 + 1}{\pi} \int_{-\pi}^{\pi} e^x \cos n x \, dx = (-1)^n \frac{2}{\pi} \sinh \pi \Rightarrow a_n = \frac{(-1)^n}{n^2 + 1} \cdot \frac{2}{\pi} \sinh \pi$$

For b_n we have something similar so I will skip a bunch of steps,

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} e^x \sin n x \, dx = \frac{1}{\pi} \left\{ -e^x \sin n x \bigg|_{-\pi}^{\pi} - n \left[e^x \cos n x \bigg|_{-\pi}^{\pi} + n \int_{-\pi}^{\pi} e^x \sin n x \, dx \right] \right\}$$

$$\Rightarrow \frac{n^2 + 1}{\pi} \int_{-\pi}^{\pi} e^x \sin n x \, dx = (-1)^n \frac{2n}{\pi} \sinh \pi \Rightarrow b_n = \frac{(-1)^n}{n^2 + 1} \cdot \frac{2n}{\pi} \sinh \pi$$

Then the Fourier Series is

$$f(x) = \frac{2}{\pi} \sinh \pi \left[\frac{1}{2} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 1} (\cos n x - n \sin n x) \right].$$
12.3: Even and Odd Functions

As we saw for the last problem in the preceding section, it can be useful to know whether or not a function is odd or even. Also, many times we will want the Fourier series of a non-periodic function. In order to do this we need to create a periodic function that includes our non-periodic function. Instead of creating something that is neither odd nor even if we create an even or odd function we can save a lot of time. Before we see these techniques let’s define some terms and develop the theory.

Definition 1. Consider the function \(f(x) \) such that \(f(-x) = f(x) \), then \(f \) is said to be even.

Definition 2. Consider a function \(f(x) \) such that \(f(-x) = -f(x) \), then \(f \) is said to be odd.

There are some important properties that we should keep in mind.

Properties.

- Sum/difference of two even functions is even.
- Sum/difference of two odd functions is odd.
- Sum/difference of an even and an odd function is neither even nor odd.
- Product/quotient of two even functions is even.
- Product/quotient of two odd functions is even.
- Product/quotient of an even function and an odd function is odd.
- If \(f \) is even, \(\int_{-L}^{L} f(x) dx = 2 \int_{0}^{L} f(x) dx \).
- If \(f \) is odd, \(\int_{-L}^{L} f(x) dx = 0 \).

Now we can think of a Fourier cosine series and Fourier sine series. These can be derived straight from the Fourier series equations so it’s best not to memorize these formulas.

Fourier cosine series. If \(f \) is an even periodic function generated on \(-L \leq x \leq L \), then \(b_n = 0 \), so

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \left(\frac{n \pi x}{L} \right)
\]

\[
a_n = \frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L} \right) dx
\]

Fourier sine series. If \(f \) is an odd periodic function generated on \(-L \leq x \leq L \), then \(a_n = 0 \), so

\[
f(x) = \sum_{n=1}^{\infty} b_n \sin \left(\frac{n \pi x}{L} \right)
\]

\[
b_n = \frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L} \right) dx
\]

For the next few problems we just apply the definition of odd and even functions.

1) Odd
5) Even
6) Neither
Periodic Extensions. Suppose a function f is defined only on $[0, L]$. If we want to find the Fourier series of this we need to make a periodic function that “includes” f. These are called periodic extensions and can either be odd or even.

For these problems we did the sketching in class. Here I will do the problems that requires calculations

Ex: Find the Fourier Sine Series of $f(x) = L - x$ on $[0, L]$.

(a) Notice that for odd extensions our periodic function of period $2L$ becomes

$$g(x) = \begin{cases} -f(-x) & -L < x < 0, \\ f(x) & 0 < x < L; \end{cases}$$

We know that for odd extensions we’ll get a sine series so we only do the sine calculations,

$$b_n = \frac{2}{L} \int_0^L (L-x) \sin \left(\frac{n \pi x}{L} \right) dx = - (L-x) \frac{2}{n \pi} \cos \left(\frac{n \pi x}{L} \right) \bigg|_0^L - \frac{2}{n \pi} \int_0^L \cos \left(\frac{n \pi x}{L} \right) dx = \frac{2L}{n \pi} + \frac{2L}{(n \pi)^2} \sin \left(\frac{n \pi x}{L} \right) \bigg|_0^L$$

Then our Fourier sine series is

$$f(x) = \frac{2L}{\pi} \sum_{n=1}^\infty \frac{1}{n} \sin \left(\frac{n \pi x}{L} \right).$$

(b) Sketch the solution for $L = 4$.

Ex: Find the Fourier Sine and Cosine series of the following function

$$f(x) = \begin{cases} x & \text{for } 0 < x < 1, \\ 0 & \text{for } 1 < x < 2 \end{cases}$$

(a) Sketch the even and odd extensions of the function.

(b) For the cosine series we have

$$a_0 = \frac{2}{L} \int_0^L f(x) dx = \int_0^1 x dx = \frac{1}{2},$$

and

$$a_n = \frac{2}{L} \int_0^L f(x) \cos \left(\frac{n \pi x}{L} \right) dx = \int_0^1 x \cos \left(\frac{n \pi x}{2} \right) dx = \frac{2}{n \pi} \sin \left(\frac{n \pi x}{2} \right) + \frac{4}{(n \pi)^2} \cos \left(\frac{n \pi x}{2} \right) \bigg|_0^1$$

$$= \frac{2}{n \pi} \sin \left(\frac{n \pi}{2} \right) + \frac{4}{(n \pi)^2} \cos \left(\frac{n \pi}{2} \right) - \frac{4}{(n \pi)^2}. $$

Notice that for this problem we can’t simplify the indices in any reasonable manner, so we leave it as is. So the Fourier cosine series is

$$f(x) = \frac{1}{4} + \sum_{n=1}^\infty \left[\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2} \right) + \frac{4}{(n \pi)^2} \cos \left(\frac{n \pi x}{2} \right) - \frac{4}{(n \pi)^2} \right] \cos \left(\frac{n \pi x}{2} \right).$$

Now, for the sine series we have

$$b_n = \frac{2}{L} \int_0^L f(x) \sin \left(\frac{n \pi x}{L} \right) dx = \int_0^1 x \sin \left(\frac{n \pi x}{2} \right) dx = -\frac{2}{n \pi} \cos \left(\frac{n \pi x}{2} \right) + \frac{4}{(n \pi)^2} \sin \left(\frac{n \pi x}{2} \right) \bigg|_0^1$$

$$= -\frac{2}{n \pi} \cos \left(\frac{n \pi}{2} \right) + \frac{4}{(n \pi)^2} \sin \left(\frac{n \pi}{2} \right)$$

Then our Fourier series is

$$f(x) = \sum_{n=1}^\infty \left[-\frac{2}{n \pi} \cos \left(\frac{n \pi x}{2} \right) + \frac{4}{(n \pi)^2} \sin \left(\frac{n \pi x}{2} \right) \right] \sin \left(\frac{n \pi x}{2} \right).$$