4.1 - 4.3 Vector spaces and subspaces

Here we saw some definitions and how they apply to some examples.

Definition 1. The vectors v_1, \ldots, v_n are said to be Linearly Independent if $c_1 v_1 + \cdots + c_n v_n \neq 0$ when $c_i \neq 0$ for $i = 1, \ldots, n$; otherwise they are said to be Linearly Dependent.

Definition 2. The expression $c_1 v_1 + \cdots + c_n v_n$ is said to be a Linear Combination of v_1, \ldots, v_n.

A vector space is simply a space that contains all of the axioms of vector addition and scalar multiplication, and is self-contained; i.e., addition and scalar multiplication of any combination of vectors will produce a vector in that space.

Definition 3. A subspace of a vector space is a nonempty subset that satisfies the requirements for a vector space: Linear combinations stay in the subset;
(i) if we add any vectors x and y in the subspace $x + y$ is in the subspace,
(ii) if we multiply any vector x in the subspace by any scalar c, cx is in the subspace.

Now let’s do some problems from pg. 173.

1) W is clearly nonempty and a subset of V. We just have to check the properties listed in Def. 3.
 (i)
 \[
 \begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 0
 \end{pmatrix} + \begin{pmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 0
 \end{pmatrix} = \begin{pmatrix}
 x_1 + y_1 \\
 x_2 + y_2 \\
 x_3 + y_3 \\
 0
 \end{pmatrix}
 \]
 By the axioms of arithmetic $x_i + y_i$ will be real numbers, and the last entry is zero, so this is in W.
 (ii)
 \[
 c \begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 0
 \end{pmatrix} = \begin{pmatrix}
 cx_1 \\
 cx_2 \\
 cx_3 \\
 0
 \end{pmatrix}
 \]
 Again, by the axioms of arithmetic cx_i will be real numbers, and the last entry is zero, so this is in W as well.
 Since both properties are satisfied, W is a subspace of V.

2) Just as the previous problem
 (i)
 \[
 \begin{pmatrix}
 x_1 \\
 x_2 \\
 4x_1 - 5y_1
 \end{pmatrix} + \begin{pmatrix}
 y_1 \\
 y_2 \\
 y_3
 \end{pmatrix} = \begin{pmatrix}
 x_1 + y_1 \\
 x_2 + y_2 \\
 4(x_1 + x_2) - 5(y_1 + y_2)
 \end{pmatrix}
 \]
 By the axioms of arithmetic all three entries will be real, thus matching the definition of the set W, and hence the vector is in W.
 (ii)
 \[
 c \begin{pmatrix}
 x_1 \\
 x_2 \\
 4x_1 - 5y_1
 \end{pmatrix} = \begin{pmatrix}
 cx_1 \\
 cx_2 \\
 4cx_1 - 5cy_1
 \end{pmatrix}
 \]

7) Here both properties can be violated. For property (ii),
 \[
 c \begin{pmatrix}
 x \\
 y \\
 -1
 \end{pmatrix} = \begin{pmatrix}
 cx \\
 cy \\
 -c
 \end{pmatrix}
 \]
 In general $-c \neq -1$, so this vector cannot be in W. Hence, W is not a subspace of V.

9) Here only property (ii) is violated,
 \[
 \sqrt{2} \begin{pmatrix} 1 \\
 1 \end{pmatrix} = \begin{pmatrix} \sqrt{2} \\
 \sqrt{2} \end{pmatrix} \notin Q,
 \]
 therefore is not in W, and W is not a subspace of V.

1