Suggested problems: Sec 1.1 # 8, 10, 11, 17, 18, 23; Sec. 1.3 # 1, 2, 5, 6, 8, 11; Sec 2.2 # 3, 6, 8, 9, 12, 16

Note: We will do 2.2 this week and 2.1 the following week.

This homework is pretty easy, but don’t worry, I promise you’ll be getting much more difficult homework problems in the following weeks.

Mandatory problems:

(1) [7pts] Sketch the direction field for \(y' = y(3 - y) - 2 \) (careful, think about it first, don’t jump right into it; just checking signs won’t work for this). What happens as \(t \to \infty \) (i.e. outline the behavior for various domains)?

(2) [2pts each] What is the order of the following ODEs and state if it is linear or nonlinear.

- a) \(y^2 y' = t \)
- b) \(yy'' = t \)
- c) \(y'' - 2ty' + t^2 y = 2 \)

(3) Consider the IVP \(y' = ty(4 - y)/3, \ y(0) = y_0 \)

(a) [8pts] Solve the IVP.

(b) [2pts] How does the behavior of the solution depend on the initial value \(y_0 \) as \(t \) increases?

(c) [2pts] Suppose \(y_0 = 0.5 \). Find the time \(T \) at which the solution first reaches the value \(y = 3.98 \).

A word on how the grading will work: Let \(m \) be the number of suggested problems, \(n \) the number of suggested problems completed, \(M \) the total number of points for the mandatory problems, and \(N \) the number of points earned for the mandatory problems. Then your homework score is:

\[
\frac{n}{2m} \cdot M + \left(1 - \frac{n}{2m} \right) \cdot \left(\frac{N}{M} \right).
\]

Just be glad it’s not a differential equation.