Supplementary problems: pg. 64 # 32, 34, 36; pg. 79 # 1, 21, 23, 29

Compulsory problems:

(1) Solve the IVP \(y' = 2y - 1; \ y(0) = 1 \).

(2) Consider the IVP, where \(b \) is a constant,
\[y' = -y + be^{-t}; \ y(0) = 0. \]

(a) [5 pts.] Solve the IVP.
(b) [2 pts.] Show that the solution attains its maximum value at \(t = 1 \).
(c) [2 pts.] For what value of \(b \) is this maximum \(y = 2 \)?

(3) Consider the IVP, where \(a \) is a constant,
\[ty' + (t + 1)y = 2te^{-t}, \quad t > 0; \ y(1) = a. \]

(a) [6 pts.] Solve the IVP.
(b) [1 pts.] Show that the solution \(y \to 0 \) as \(t \to \infty \)
(c) [3 pts.] If \(y = 0 \) at \(t = 2 \), what is \(a \)?
(d) [3 pts.] If the solution \(y \) has a critical point at \(t = 1/2 \), what is \(a \)?

(4) Consider two connected tanks: Tank 1 and Tank 2. Initially Tank 1 contains 100 gal of fresh water and Tank 2 100 gal of brine containing 10 lb of salt. Brine containing 0.5 lb/gal of salt is pumped into Tank 1 at 1 gal/min, and the mixture leaves Tank 1 and into Tank 2 and finally out of Tank 2 at the same rate.

(a) [5 pts.] Derive the IVP (i.e. ODE + IC) for the salt content in Tank 1.
(b) [5 pts.] Derive the IVP for the salt content in Tank 2.
(c) [4 pts.] Find the amount of salt in Tank 1 for any time (i.e. solve the IVP).
(d) [6 pts.] Find the amount of salt in Tank 2 for any time.

A word on how the grading will work: Let \(m \) be the number of supplementary problems, \(n \) the number of supplementary problems completed, \(M \) the total number of points for the compulsory problems, and \(N \) the number of points earned for the compulsory problems. Then your homework score is:
\[\frac{n}{2m} \cdot M + \left(1 - \frac{n}{2m} \right) \cdot N = N + \frac{n}{2m} (M - N). \] Just be glad it’s not a differential equation.