Math 4350 Rahman
Exam I Review

Most important things to know: induction, proving limits, using limit laws.

Definition 1. A sequence \(\{x_n\} \subseteq \mathbb{R} \) converges if there is an \(x \in \mathbb{R} \) such that
For every \(\varepsilon > 0 \), there is an \(N \) such that \(|x - x_n| \leq \varepsilon \) for all \(n \geq N \);
otherwise it diverges. We call this \(x \) the limit of \(\{x_n\} \).

Theorem 1. If \(x_n \to p \), then \(\{x_n\} \) is bounded.

Theorem 2 (Squeeze). For \(\{x_n\}, \{y_n\}, \{z_n\} \subseteq \mathbb{R} \), if \(x_n \leq y_n \leq z_n \) for all \(n \in \mathbb{N} \) and \(\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n \), then \(\{y_n\} \) is convergent and \(\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = \lim_{n \to \infty} z_n \).

Theorem 3. If \(x_n \to p \), \(|x_n| \to |p| \).

Theorem 4 (Monotone Convergence). A monotone sequence converges if and only if it is bounded, and if \(\{x_n\} \) is bounded and increasing,

\[
\lim_{n \to \infty} x_n = \sup \{x_n : n \in \mathbb{N}\},
\]

and if \(\{y_n\} \) is bounded and decreasing,

\[
\lim_{n \to \infty} y_n = \inf \{y_n : n \in \mathbb{N}\}.
\]

Property 1 (Divergence criteria). If \(\{x_n\} \subseteq \mathbb{R} \), then it diverges if
(1) it is unbounded, or
(2) it has convergent subsequences with differing limits.

Lemma 1 (Monotone subsequences). If \(\{y_n\} \subseteq \mathbb{R} \), it has a monotone subsequence.

Theorem 5 (Bolzano–Weierstrass). If \(\{x_n\} \subseteq \mathbb{R} \) is bounded, it has a convergent subsequence.

Lemma 2. If \(\{x_n\} \subseteq \mathbb{R} \) converges, then for all \(\varepsilon > 0 \), there is an \(N \in \mathbb{N} \) such that \(|x_m - x_n| < \varepsilon \) for all \(n, m \geq N \).

Definition 2. A sequence \(\{x_n\} \subseteq \mathbb{R} \) is called a Cauchy sequence if
for all \(\varepsilon > 0 \), there is an \(N \in \mathbb{N} \) such that \(|x_m - x_n| < \varepsilon \) for all \(n, m \geq N \).
And this property is called the Cauchy criterion.

Theorem 6 (Cauchy sequences). In \(\mathbb{R} \) every Cauchy sequence converges.

Induction: For induction make sure you prove the base case first, then make the inductive assumption, then prove the inductive step. It is not enough to show it for a few cases, nor is it enough to just show the inductive step (until after you graduate that is).

Proving limits: To prove the existence of a limit, first do a little scratch work to see what \(N(\varepsilon) \) has to be to make your entire quantity less than \(\varepsilon \), but be careful to make sure that \(N \) is increasing as \(\varepsilon \) is decreasing, otherwise you picked the wrong \(N \).

Definition 3. Let \(x_0, \varepsilon \in \mathbb{R} \) such that \(\varepsilon > 0 \). Then the \(\varepsilon \)-neighborhood (ball) around \(x_0 \) is \(B_\varepsilon(x_0) := \{x \in \mathbb{R} : |x - x_0| < \varepsilon\} \).

Notice that in the real line, a neighborhood or ball, is just an open interval, so \(B_\varepsilon(x_0) = (x_0 - \varepsilon, x_0 + \varepsilon) \).

Most important homework problems: Compulsory: Hw2 # 1; Hw3 # 3-6; Hw4 All;
Supplementary: 1.2 # 1; 1.2 # 26; 2.2 # 16; 3.1 # 5; 3.2 # 20, 23; 3.3 # 1-3; 3.4 # 3, 9.
Additional problems you can look at: 1.2 # 2 - 5, 7 - 9, 13 - 15, 18; 3.1 # 4, 6, 16, 17; 3.2 # 1, 5, 6, 9 - 17; 3.3 # 4 - 7, 11, 12; 3.4 # 7, 8.

The exam is organized as follows: 45 points will be mainly calculations with the use of a little bit of theory (e.g. proving a limit), 45 points will be using theorems/logic to prove the results, and 10 points will be a completely theoretical problem involving sets, topology, and sequences all in one.

Note: I will never ask you to prove a theorem. I don’t want you memorizing proofs!