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ABSTRACT Electroencephalogram (EEG) is a technique for recording the asynchronous activation of 
neuronal firing inside the brain with non-invasive scalp electrodes. Artifacts, such as eye blink activities, 
can corrupt these neuronal signals. While ocular artifact (OA) removal is well investigated for multiple 
channel EEG systems, in alignment with the recent momentum toward minimalistic EEG systems for use 
in natural environments, we investigate unsupervised and effective removal of OA from single-channel 
streaming raw EEG data. In this paper, the unsupervised wavelet transform (WT) decomposition technique 
was systematically evaluated for the effectiveness of OA removal for a single-channel EEG system. A set 
of seven raw EEG data set was analyzed. Two commonly used WT methods, Discrete Wavelet Transform 
(DWT) and Stationary Wavelet Transform (SWT), were applied. Four WT basis functions, namely, haar, 
coif3, sym3, and bior4.4, were considered for OA removal with universal threshold and statistical threshold 
(ST). To quantify OA removal efficacy from single-channel EEG, five performance metrics were utilized: 
correlation coefficients, mutual information, signal-to-artifact ratio, normalized mean square error, and time- 
frequency analysis. The temporal and spectral analysis shows that the optimal combination could be DWT 
with ST with coif3 or bior4.4 to remove OA among 16 combinations. This paper demonstrates that the WT can 
be an effective tool for unsupervised OA removal from single-channel EEG data for real-time applications. 

INDEX TERMS Artifact removal, electroencephalogram (EEG), ocular artifact, wavelet transform, single 
channel EEG. 

 
 

 
 

I. INTRODUCTION 
Electroencephalogram (EEG) is the recording of the brain’s 
spontaneous electrical activity captured non-invasively by 
placing electrodes on the scalp [1]. EEG has  been  uti- 
lized in many medical diagnosis, prognosis and therapies 
including epilepsy, sleep disorder, coma, encephalopathy 
and brain deaths [2]. EEG signals are often corrupted by 
two sources of artifacts: physiologic such as eye, muscle, 
and cardiac activities, and extraphysiologic such as line 
interference and electrode noise. Extraphysiologic artifact 
can often be removed using appropriate filtering techniques 
as there is spectral separation. However physiologic artifact 
removal requires careful attention as they can be within the 
same frequency range of the EEG signal and are aperiodic. 

Ocular artifacts (OA) due to eye movement and eye blinks are 
dominant over other contaminating physiologic artifacts [3]. 
As EEG signal can be used for analyzing different dis- 
eases [4]–[6], monitoring brain engagement [7], [8], different 
techniques have been proposed for the removal of OA from 
EEG to make it more reliable for different purposes. The 
widely used methods for removing OAs are based on regres- 
sion in time domain [9] and frequency domain [10]. But these 
methods need the recording of Electrooculogram (EOG), and 
can also result in the elimination of neural activities [11]. 
Statistical techniques like Principal  Component  Analy- 
sis (PCA) [12], Kurtosis [13], Independent Component Anal- 
ysis (ICA) [14] and Multiscale sample entropy [15] are also 
shown to be effective to remove OA, but they rely on multiple 
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channel data. One of the robust and promising ocular artifact 
removal techniques for single channel EEG data is Wavelet 
Transform (WT) [11], [18]. 

Zikov et al. discussed applying stationary wavelet trans- 
form with coif3 wavelet filters to denoise the EEG sig- 
nal [8]. In their proposed study, 60-second baseline EEG was 
recorded to calculate threshold required for denoising. Use of 
haar wavelet is explored in detecting changes in the state of 
the eye (eye-blinks and eyeball movements) [17]. Stationary 
wavelet transform with coif3 as a basis function with various 
non-adaptive thresholding methods have also been demon- 
strated [18]. Another wavelet-based approach of removing 
ocular artifact was to use stationary wavelet transform with 
sym3 as a basis function and to use the coefficient of variation 
to detect and denoise the artifact [19]. 

With the advent of ambulatory and miniaturist body- 
worn EEG systems with few channels for routine 
monitoring [20]–[22], there is a growing need to develop 
effective OA removal technique that can operate on few 
channel EEG data. For real-time applications like mental state 
classification, comfort sensing, emotion sensing, movement 
prediction etc., algorithms should perform reasonably with 
short epoch of streaming EEG data. Many brain-computer 
interfacing (BCI) systems are utilized for routine and contin- 
uous monitoring of brain activities for epilepsy [23], autistic 
spectrum disorder (ASD) [24], and Alzheimer’s patients [25]. 
Hence, removal of artifacts in real-time with the access of few 
channel (especially single channel) is of research interest. 
Though there is a vast amount of literature available on 
using wavelet transform for ocular artifact removal from 
EEG data [20]–[22], a little have investigated the effects of 
using various possible forms of WT for single channel OA 
removal. The evaluation of existing WT techniques is critical 
in order to find the efficient, reliable and unsupervised way 
of denoising OA for real time BCI applications. 

This paper compares different combinations of wavelet 
decomposition techniques, thresholds and mother wavelets. 
Specifically, we present a comparative study  of  discrete 
and stationary wavelet transform using four basis functions: 
haar, coif3, sym3, and bior4.4 with Universal and Statistical 
Thresholding for OA removal from single channel EEG data. 
These combinations are carefully selected as they are com- 
monly used for OA removal [19]–[22], [25]. Furthermore, we 
present objective performance metrics using multiple statis- 
tical measures in time domain and frequency domain. 

II. WAVELET TRANSFORM AND PERFORMANCE METRICS 
A. WAVELET TRANSFORM (WT) DECOMPOSITION 
WT can be applied to any single channel EEG data to remove 
OAs without information from any other EEG or EOG chan- 
nels. WT decomposes a time-varying signal into its set of 
basis functions known as wavelets. These basis functions 
known as wavelets are obtained by performing dilations and 
shifting of the mother wavelet: 

t −	b 

where a is the scaling parameter and b is the shifting param- 
eter [13]. In this study, we have implemented multi-level 
wavelet decomposition in order to get precise information 
about the wavelet coefficients. In addition to ocular artifact 
removal, WT is proven to be a robust tool in several appli- 
cations like machine condition monitoring [27], hologram 
analysis [28], pitch detection of speech signals [29], multi- 
modality medical image fusion [30], fault detection in a spur 
gear [31], power quality analysis [32], signal processing in 
white-light interferometry [33]. 

 

 
FIGURE 1. Graphical representation of DWT decomposition. (HPF: High 
pass filter, LPF: Low pass filter.) 

 
 
 
1) DISCRETE WAVELET TRANSFORM (DWT) 
DWT is considered non-redundant and highly efficient 
wavelet transform to obtain discrete wavelet representation of 
signals [34], [35]. In DWT, the input signal is passed through 
a low pass and high pass filter to get approximate coefficients 
(ak) and detail coefficients (dk), respectively, where k rep- 
resents the level of decomposition (Figure 1). This process 
is repeated until the desired frequency range is obtained. 
At each stage, the filter output is down-sampled by 2, later 
up-sampled to reconstruct the signal. In this  study,  we 
have used in-built wavedec function in Matlab (MathWorks, 
Natick, MA) to implement DWT in the denoising algorithm. 

 
2) STATIONARY WAVELET TRANSFORM (SWT) 
The major drawback of DWT is its time-variance, which is 
particularly important in statistical signal processing appli- 
cations such as EEG [36]. SWT overcomes this translation- 
invariance drawback of DWT, but has redundant information 
and is relatively slow [37]. The design difference between 
DWT and SWT is the filter at each stage [38]. The approxi- 
mate and detail sequences at each level of decomposition are 
of the same length as the original sequence. After obtaining 
the coefficients at jth level, the algorithm up samples the filter 
coefficients by a factor of 2j−1. It has been implemented by 
the swt function of MATLAB in this study. 

 
3) WAVELET BASIS FUNCTIONS 
WT of the EEG signals yields the wavelet coefficients 
which represents the correlation between EEG signal and 
the wavelet basis functions. Figure 2 represents some com- 
monly used WT basis functions utilized in the literature 

\Ila,b(t) =	\Il( ) (1) 
a for  OA  removal.  For  eye-blink  removal,  these  wavelets 
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=	

 
variables x (t1) and x (t2), then correlation coefficient of the 
process x(t) is [39]: 

 
 
 
 

FIGURE 2.  Examples of common wavelet basis functions that can be 
applied for artifact removal from EEG data. (Plotted using Matlab 
built-in  functions.) 

 

perform well as they resemble the characteristics of these 
eye blinks [16], [18], [19]. In this paper, we have compared 
the performance of widely used symlet (sym3), haar (haar), 
coiflet (coif3), and biorthogonal (bior4.4) wavelets. 

 
4) WAVELET THRESHOLDING FOR DENOISING 
The approximate and detail coefficients of the decomposed 
EEG needs to be denoised to separate the artifactual coeffi- 
cients from neural signal coefficients. For thresholding the 
wavelet coefficients, two commonly used metrics: Universal 
Threshold (UT) and Statistical Threshold (ST) are evaluated 

r (t1, t2) 
C (t1, t2) 

(5) =	√
C (t1, t1) C (t2, t2) 

Mutual Information (MI) is used statistically to measure how 
much information one random variable contains about the 
other random variable. If U and V are two partitions of 
sample space S, then information about U contained in V or 
information about V contained in U is: 

I (U, V) =	H (U) +	H (V) −	H(U.V) (6) 

I (U, V) represents mutual information [39]. 
Signal to Artifact Ratio (SAR) is a quantification method 

to measure the amount of artifact removal in a specific signal 
after processing with an algorithm [40]. If z is the EEG signal 
containing artifact and ẑ	 is the signal obtained after running 
an artifact free algorithm. Hence, 

std (z) 
in this paper. UT is implemented as: SAR =	10 log( 

std z
 

  ) (7) 
−	ˆ	

K =	
j
2logNσ (2) 

   Ca|   Normalized Mean Square Error (NMSE) approximates the 
o 2 median(  

|
	

0.6745 
) (3) difference between the ideal and actual data [11]. NMSE is 

computed in dB using the equation: 
where, K  is the estimation of neuronal wide band signal 
magnitude using UT, N is the length of data to be processed, 
Ca is the wavelet coefficients at ath level of decomposition 

 
NMSE =	20logE{	

}, 
[x1 (i) −	x2 (i)]2 

}, 
[x1 (i)]2 

 
}	 (8) 

that undergoes thresholding, and 0.6745 is the constant value 
for Gaussian noise [15]. 

We also implemented ST (proposed by Krishnaveni et al. 
in [18]) in our study which is based on the statistics of the 
signal. As discussed in [19], the proposed threshold produces 
better de-noised results than the other conventional thresh- 
olds. Mathematically, the proposed ST is formulated as: 

T =	1.5∗std (Hk ) (4) 

where T is the estimation of neuronal wide band signal 
magnitude using ST, std(Hk) employs standard deviation of 
wavelet coefficients at kth level. In both cases, hard thresh- 
olding is applied, where wavelet coefficient is removed if 
the absolute value of wavelet coefficient is greater than the 
threshold. 

 
B. PERFORMANCE METRICS 
Different statistical performance metrics have been used to 
objectively compare various combinations of OA removal in 
time and frequency domain. For time domain comparison, 
correlation coefficient, mutual information, signal to artifact 
ratio and normalized mean square error have been evaluated. 
For frequency domain comparison, time frequency analysis 
has been utilized. 

Correlation Coefficient (CC) is a statistical method that 
shows the degree of association between two variables. 
Suppose C(t1, t2) is the auto-covariance of a process x(t), 
or in another way, C (t1, t2) is the covariance of the random 

Time and frequency components can be analyzed simultane- 
ously using the wavelet decomposition tool of EEGLAB tool- 
box (Matlab, CA, US). This allows qualitative comparison of 
the signals before and after artifact denoising. 

 
III. EXPERIMENTAL METHOD 
For EEG acquisition, a 14-channel referential montage EPOC 
headset (Emotiv, Eveleigh, NSW, Australia) at a sampling 
rate of 128 sps was used in the lab setting. Before data 
acquisition, the skin of the subject was cleaned using Nuprep 
skin preparing gel (Weaver and Company, Aurora, CO) and 
mild abrasive strips to remove the dead skin and thereby 
moisten the skin. Data was collected from four subjects (two 
males, two females) at AF3, AF4, F3, F4, F7, F8, FC5, FC6, 
P7, P8, T7, T8, O1, and O2 channel locations in a closed 
room for 1 min 45 s. During the recording, subjects were 
instructed to blink 9 times with a 5 s hiatus. As OAs are 
prominent in the frontal lobe, only AF3 channel data was 
used for analysis in this study. Out of two sessions/subject 
data recording, 7 datasets were used for this study using an 
approved Institutional Review Board protocol (University of 
Memphis IRB# 2289). 

As OAs are prominent in the frontal lobe, most of the com- 
parison plots in this study are from AF3 channel. However, 
as discussed in the literature, WT can be applied to denoise 
any channel location, as depicted in Figure 3. OAs occur due 
to eye movement and eye-blinks and have frequency ranges 
of 0-7 Hz and 8-13 Hz, respectively [16]. To accurately 
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FIGURE 3. 12-channel EEG data from the Dataset 4 (Top) Raw (Below) OA 
artifact-free. X-axis is time in seconds and Y-axis is amplitude in 
microvolts. 

 
 

identify artifact related wavelet coefficients, we have imple- 
mented multi-level wavelet decomposition using SWT or 
DWT. The decomposition was done up to level 8 (level 8: 
0.25-0.5 Hz, level 7: 0.5-1 Hz, level 6: 1-2 Hz, level 5: 
2-4 Hz, level 4: 4-8 Hz, level 3: 8-16 Hz, level 2: 16-32 Hz and 
level 1: 32-64 Hz) to obtain the frequency range of interest. 
For denoising the wavelet coefficients, thresholding has been 
done over the detail coefficients from level 8 up to level 3. 
As the sampling rate of the dataset is 128 sps, decomposing 
up to level 3 gives us the required ocular related wavelet 
coefficients for denoising. Either UT or ST is implemented 
for thresholding and sym3, haar, coif3 or bior4.4 have been 
used as mother wavelet. With two wavelet decomposition 
techniques (DWT/SWT), two thresholds (UT/ST) and four 
mother wavelets (sym3/haar/coif3/bior4.4), 16 combinations 
or methods are possible to remove OA from EEG. The outputs 
of these combinations are quantified and compared using 
different performance metrics. 

 
IV. RESULTS AND ANALYSIS 
Figure  4  compares  raw  and  OA-artifact  free   EEG 
data using coif3 wavelet basis function with statistical 
threshold  to  denoise  single  channel  EEG  data  using 

 
 

 
 

FIGURE 4. Comparison of a section of EEG data from AF3 channel 
(Dataset 1) before and after denoising using SWT and DWT 
decomposition  techniques  with  coif3  wavelet. 

 
SWT and DWT techniques. Careful observation indicates that 
SWT produced cleaner processed signals, however, DWT 
is a faster method, which is an important aspect of real 
time data processing (e.g. streaming data). Most OA removal 
algorithms affected neuronal signals where there is no blink 
artifact (non-blink regions). To the distinguish performance 
of an algorithm to remove OA, while preserving neuronal 
signals, we have segregated the raw EEG data into ‘‘Blink 
regions’’ and ‘‘Non-blink regions.’’ 

CC and MI have been calculated between raw and re- 
constructed signals for blink and non-blink regions of the 
entire EEG data. The ideal eye blink removal algorithm would 
produce high CC and MI values in the non-blink region, 
while low CC and MI values in the blink region [41], [42]. 
Figure 5 and Figure 6 show the statistical analysis of the CC 
and MI metrics (averaged over 7 datasets) for both blink and 
non-blink regions of AF3 channel EEG data. 

In both cases, DWT with UT performs better in an eye- 
blink region than all other WT threshold combinations. 
Among them, DWT+UT+sym3 gives the lowest value of 
CC, while DWT+UT+haar gives the lowest value of MI. 
However, the efficacy of DWT with UT to preserve neuronal 
information in a non-blink region is poor. This might be due 
to spectral shift introduced by DWT technique. Similarly, 
among all cases, the SWT with ST generates higher values 
of CC and MI than all other WT threshold combinations for 
non-blink regions. Among these, SWT+ST+haar provides 
the highest values of CC and MI in non-blink regions. Based 
on CC and MI metric, SWT with UT reveals that neuronal 
signals retention is poor, but removes or changes the blink 
zone in a greater amount. SWT with ST retains neuronal 
signals based on both CC and MI metrics, even though OA 
removal performance based on CC and MI is not as good 
as other methods. Applying DWT with UT doesn’t show the 
power of preserving neural information based on CC and MI 
metric.  DWT  with  ST  is  excellent  to  retain  neuronal 
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FIGURE 5.  Correlation coefficient comparison (N=7) for blink and 
non-blink EEG data using UT and ST thresholds with SWT and DWT 
methods. 

 

 
 

FIGURE 6.  Mutual Information comparison (N=7) for blink and non-blink 
EEG data using UT and ST thresholds with SWT and DWT methods. 

 
 

information based on CC metric for all wavelets, but perfor- 
mance is dependent on wavelet types based on MI metric, 
where haar wavelet outperforms other basis functions. 

According to the definitions, the technique that produces 
the higher value in the SAR and the lower value in the NMSE 

 
 

TABLE 1. SAR on EEG datasets using UT and ST thresholds with SWT and 
DWT methods. 

 

 
 

TABLE 2. NMSE on EEG datasets using UT and ST thresholds with SWT 
and DWT methods. 

 

 
 

is considered to be more effective. Table 1 depicts the values 
of SAR for different methods. Based on SAR, SWT+ST 
combination performs superior to others. It is noted from 
Table 1 that, in general, SAR values are higher when ST is 
used with any types of wavelet, indicating ST is aggressive 
in eliminating probable artifacts, while UT is conservative. 
DWT+ST performs better after SWT+ST combination. 

Table 2 depicts the values of NMSE for different methods. 
Based on Table 2, SWT+ST again outperforms other methods, 
while DWT+ST is the second best, compared to other WT 
threshold combinations. As the lower NMSE indicates better 
technique, both SWT and DWT show superior performance 
with ST for any type of wavelet basis functions. NMSE values 
are lower when ST is applied with both SWT and DWT using 
any type of wavelet basis functions. 

Time-frequency analysis results are shown along with 
the raw signal (Dataset 1, AF3 channel location) in Fig- 
ure 7. Few DWT methods are observed to have introduced 
new artifactual noise in the processed data during the OA 
removal throughout the spectrum (e.g. DWT+UT+haar, 
DWT+ST+haar). DWT with UT is also noted to decrease 
the overall magnitudes of neuronal signals. Within DWT 
results, ST with coif3 and bior4.4 seems to retain neuronal 
signals effectively while minimizing OA. Further, in order 
to analyze over frequency domain, magnitude squared coher- 
ence measure is calculated between the raw and OA-artifact 
free EEG data and is plotted for these two combinations 
in Figure 8. Magnitude squared spectral coherence estimate 
between 0 and 1 corresponds to how well the two-signals, a 
and b, relates at various frequencies and is mathematically 
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FIGURE 7.  Time-Frequency comparison plots of various wavelets and thresholds for OA artifact denoising 
technique using (a) SWT (b) DWT. Raw EEG signal is from prefrontal AF3 channel location of Dataset 1. 

 
 

calculated as: where  Pab(f) is the cross power spectral densities of the 
Pab (f )2 signal, Paa (f) is power  spectral density of raw EEG signal 

Cab(f) =	
aa (f )Pbb 

(9) 
(f ) and Pbb (f) is power spectral density of OA-artifact free EEG 
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FIGURE 8.  Magnitude squared coherence measure plot for one subject 
from AF3 location after denoising with (a) DWT+ST+coif3 
(b) DWT+ST+bior4.4 combination. 

 
 

signal. It has been implemented in this study using mscohere 
function of Matlab. It has been observed that all of the SWT 
combinations show efficacy in preserving neuronal signals 
and do not introduce new artifacts like some of the DWT 
combinations. 

 
V. DISCUSSION AND CONCLUSIONS 
Brain monitoring using a few EEG sensors in non-clinical 
settings has drawn a lot of attention lately. These real time 
BCI applications like cognitive load assessment, diagnosis of 
brain disorders, fatigue prediction, and cognitive biometrics, 
need fast and efficient pre-processing algorithms in order to 
process and analyze raw brain signals reliably in real time. 
The most common artifact in the EEG signal is due to the 
ocular activity. This study, therefore, focusses on comparing 
the effectiveness of commonly used wavelet based techniques 
for ocular artifact removal in a single channel EEG system. 
This will allow us to determine the optimal wavelet decompo- 
sition technique and corresponding threshold to denoise EEG 
signal effectively. 

In this paper, data from AF3 channel has been presented as 
a representative of EEG signal contaminated with artifacts to 
compare several WT based methods. However, the algorithm 
is not specific to the channel and is applicable to EEG record- 
ings from any channel. Based on CC and MI metrics, DWT 
with ST using haar wavelet is found to be more effective than 
DWT+ST+coif3 or DWT+ST+bior4.4, but time-frequency 
analysis shows higher distortion in the processed data 
using this combination. As these metrics analyze different 

performances of the algorithm, so none of the combinations 
was superior based on all metrics. Based on these results, 
DWT with ST using coif3 and bior4.4 wavelet basis func- 
tions have performed well for OA removal while preserving 
neuronal signals in the non-blink regions based on CC, MI, 
SAR, NMSE and time-frequency analysis. 

As fast algorithms are required for real-time systems, a 
trade-off must be considered for an efficacious method with 
low distortion. It is known that DWT is a faster technique 
requires less computational resources than SWT for real- 
time analysis [43]. According to the results presented in this 
paper, DWT+ST+coif3 or DWT+ST+bior4.4 could be an 
optimum choice. For the applications, where computation 
time is not critical, SWT with haar wavelet can be used 
with the statistical threshold. Instead of applying OA removal 
algorithm over the whole dataset as outlined in this paper, 
another approach is to identify blink regions and apply OA 
removal algorithm only to these OA regions to develop a 
faster OA removal technique, which we have reported pre- 
viously [44]. Our future research directions include hardware 
implementation and optimization of efficacious OA removal 
technique for a single channel EEG system, real-time OA 
removal, feature extraction, and cognitive load classification 
to monitor brain engagement in natural environment within a 
wearable embedded system. 
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