Locating Roots (and Poles) :
Rouché’s & Hurwitz’s Theorems

Josh Engwer
Texas Tech University

March 18, 2012

NOTATION: \(\mathbb{N} = \{1, 2, 3, \ldots\} \)

\(B(a; r) \equiv \{z \in \mathbb{C} : |z - a| < r\} \quad \bar{B}(a; r) \equiv \{z \in \mathbb{C} : |z - a| < r\} \quad \partial B(a; r) \equiv \{z \in \mathbb{C} : |z - a| = r\} \)

\(\gamma \in \mathcal{CRC}(G) \equiv \gamma \) is a closed, rectifiable curve in open set \(G \)

\(n(\gamma; a) := \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - a} \, dz \equiv \text{index (or winding number)} \) of \(\gamma \) w.r.t. the point \(z = a \) \hspace{1em} \text{[provided} \ a \not\in \gamma \text{]} \)

\(\gamma \approx 0 \equiv \gamma \) is homologous to zero \(\iff n(\gamma; w) = 0 \ \forall w \in \mathbb{C} \setminus G \)

\(H(G) \equiv \{ \text{analytic functions on region } G \} \quad M(G) \equiv \{ \text{meromorphic functions (analytic except for poles) on } G \} \)

\[\{f_n\} \xrightarrow{\text{gakT}} f \equiv \{f_n\} \xrightarrow{\text{uniformly on compact subsets}} f \quad \text{”gakT” stands for ”gleichmäßig auf kompakten Teilmengen”} \]

ARGUMENT PRINCIPLE: \(\left[\int_{\gamma} \frac{f'(z)}{f(z)} \, dz \right. \) is interpreted as the total change in \(\arg f(z) \) as \(z \) traces the curve \(\gamma \)

Let \(G \) be an open set and \(f \in M(G) \) with poles \(p_1, \ldots, p_m \) and zeros \(z_1, \ldots, z_n \) counted by multiplicity.
If \(\gamma \in \mathcal{CRC}(G) \) with \(\gamma \approx 0 \) and passing thru none of the poles \(p_1, \ldots, p_m \) or zeros \(z_1, \ldots, z_n \),

then, \(\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} \, dz = \sum_{k=1}^{n} n(\gamma; z_k) - \sum_{j=1}^{m} n(\gamma; p_j) \)

ROUCHÉ’S THEOREM:

- (Roots & Poles) Let \(\epsilon > 0 \) and \(f, g \in M(B(a; r + \epsilon)) \) with no zeros or poles on the circle \(\partial B(a; r) \).

 Let \(Z_f, P_f, Z_g, P_g \) denote the number of zeros and poles of \(f, g \) inside \(\partial B(a; r) \) counted by their multiplicities.

 Then \(|f(z) + g(z)| < |f(z)| + |g(z)| \ \forall z \in \partial B(a; r) \implies Z_f - P_f = Z_g - P_g \)

- (Roots only) Let \(\epsilon > 0 \) and \(f, g \in H(B(a; r + \epsilon)) \) with no zeros on the circle \(\partial B(a; r) \).

 Let \(Z_f, Z_g \) denote the number of zeros of \(f, g \) inside \(\partial B(a; r) \) counted according to their multiplicities.

 Then \(|f(z) + g(z)| < |f(z)| + |g(z)| \ \forall z \in \partial B(a; r) \implies Z_f = Z_g \)

HURWITZ’S THEOREM: Throughout, \(G \) is assumed to be a region (i.e. open connected set)

- (Theorem) Let \(\{f_n\} \subset H(G) \) s.t. \(\{f_n\} \xrightarrow{\text{gakT}} f \not\equiv 0 \) and let \(\bar{B}(a; r) \subset G \) s.t. \(f(z) \not\equiv 0 \ \forall z \in \partial B(a; r) \)

 Then \(\exists N \in \mathbb{N} \) s.t. \(n \geq N \implies f \) and \(f_n \) have the same number of zeros in \(B(a; r) \)

- (Corollary) Let \(\{f_n\} \subset H(G) \) s.t. each \(f_n \) has no zeros in \(G \).

 Then \(\{f_n\} \xrightarrow{\text{gakT}} f \in H(G) \implies \text{either } f \text{ has no zeros in } G \ \text{ OR } f \equiv 0 \)
References