
lable at ScienceDirect

Journal of Arid Environments 118 (2015) 1e8
Contents lists avai
Journal of Arid Environments

journal homepage: www.elsevier .com/locate/ jar idenv
Testing a model for the prediction of isolated waters in the Sonoran
Desert

Joseph C. Drake a, Jeffrey S. Jenness b, Jordan Calvert a, Kerry L. Griffis-Kyle a, *

a Department of Natural Resources Management, Texas Tech University, Box 42125, Lubbock, TX 79409, USA
b Jenness Enterprises, 3020 N. Schevene Blvd, Flagstaff, AZ 86004, USA
a r t i c l e i n f o

Article history:
Received 27 June 2014
Received in revised form
2 December 2014
Accepted 17 February 2015
Available online

Keywords:
Ephemeral water
Mahalanobis distance
Topographic wetness index
Slope
Southwestern United States
Arizona
Wetland
Predictive
Model
* Corresponding author.
E-mail addresses: joseph.drake@ttu.edu (J.C. D

(J.S. Jenness), jordan.goetting@ttu.edu (J. Calvert
(K.L. Griffis-Kyle).

http://dx.doi.org/10.1016/j.jaridenv.2015.02.018
0140-1963/© 2015 Elsevier Ltd. All rights reserved.
a b s t r a c t

Water is an extremely limiting resource in arid regions and wildlife managers need accurate inventories
of water sources to better manage natural resources. Many of the water sources in the Sonoran Desert are
tinajas, solid rock-bottom pools of varying sizes. These and other isolated and ephemeral water resources
are essential for desert wildlife. We developed an approach to predict the location of unidentified
ephemeral waters in the Sonoran Desert of Arizona, USA. We used Mahalanobis distance based on
topographic wetness and slope to indicate groups of pixels in GIS that are the most similar in these
aspects to locations of currently knownwaters. We tested this model in southwestern Arizona at the U.S.
Air Force's Barry M. Goldwater Range - East by comparing polygons of predicted waters with random
polygons. Seventy-four percent of standing surface water features found were attributed to the predicted
polygons derived by our model. The model found a significantly larger water capacity in predicted
polygons than in random polygons. This modeling technique could provide a new tool for researchers
and land managers to better estimate potential water resources for wildlife conservation objectives in
arid landscapes.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Water is a critically limiting resource for many species of wild-
life, especially in arid regions. In the Sonoran Desert, ephemeral and
isolated waters can be found in intermittent streams, rock pools
(tinajas), springs, and seeps. Biodiversity in arid lands tends to be
concentrated around these areas of water, even if that water is very
ephemeral in nature (Souza et al., 2006). These sites are recognized
as rare, patchily distributed (Shepard, 1993), and having cultural
and biological value (Burke et al., 2002). Isolated desert springs,
which provide more persistent sources of waters, can be as far as
100 km apart and are difficult for many types of organisms to move
between (Shepard, 1993). Hence, expanding the knowledge of
surface water types and localities is very important for wildlife
management. Isolated and ephemeral waters in arid lands often are
home to endemic and rare species of vertebrates and invertebrates
rake), jeffj@jennessent.com
), kerry.griffis-kyle@ttu.edu
(Hendrickson and Minckley, 1985). These resources are literal oases
in the landscape, but are considered threatened and sensitive to
changes in precipitation, rising temperatures, and other climate
change impacts (Glick and Stein, 2010; Field et al., 2007).

Climatic shifts are projected to reduce water availability in the
southwestern United States due to a reduction in precipitation and
increased evaporation as a result of the increased temperature (Karl
et al., 2009; Seager et al., 2007; Field et al., 2007). Less precipitation
means less water will be available to recharge aquifers and as a
result springs will dry (Field et al., 2007). Groundwater extraction
has already contributed to a reduction in water tables across the
southwest (Carpenter, 1999; Konikow, 2013) and to available sur-
face water at seeps, springs, and other historically wet areas (Patten
et al., 2008). Continued urban population expansion (Swanson,
1989) and agricultural need (Karl et al., 2009; Ackerman and
Stanton, 2011) will continue to enhance groundwater depletion
and the reduction of reliable surface waters available to both
humans and wildlife.

Other sources of surface water in arid environments will be
impacted by climate change and anthropogenic influence too.
Water available for wildlife will be reduced by several related
mechanisms. Ephemeral water sites such as charcos, tinajas, and
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intermittent streams are dependent on precipitation. Rain events
are projected to occur less frequently with a higher intensity of
precipitation per event (Karl et al., 2009). Tinajas (rock-bottom
pools) hold a limited amount of water, and once they are filled
excess water runs off into the surrounding soil. As fewer rain events
occur it is more likely that these ephemeral waters will dry
completely between each rain event. These shortened hydro-
periods will only be exacerbated by the increased evaporation
caused by increasing temperature regimes (Glick and Stein, 2010;
Field et al., 2007). The smaller the reservoir of water, manmade
(Goodrich and Ellis, 2008) or natural, the greater the impact
reduced rain frequency and increased evaporation incurs upon
them. Increased intensity of rainfall events in the southwest also
increase the risk of flooding and the sedimentation caused by
floodwater runoff. Reduced capacity for water-storage could occur
in tinajas, charcos, and intermittent streams. Wildlife will have less
water available in an already water limited environment.

Since the 1940's, natural resource managers have been moni-
toring existing water sites and constructing new developments for
wildlife in the desert southwestern United States (Rosenstock et al.,
2004; Wright, 1959). Active management of water for wildlife can
help offset reduced access to water caused by factors such as
landscape fragmentation and climate change (Rosenstock et al.,
2004). Locations that already have water are arguably the best
places for conservation efforts such as future water developments.
Focusing conservation efforts at these known water locations
(currently or historically) could provide managed waters that are
less ecologically abrasive, or are less likely to illicit a negative
ecological consequence within the natural stochasticity of the
spatial extent of interest, than novel catchments. Natural waters
appear not to experience some of the problems associated with
artificial waters (Griffis-Kyle et al., 2014). These known waters
would be less “out-of-place”within the natural context of the area.
The conservation of sites that already havewater is an effective step
in maintaining biodiversity in arid environments (Minckley et al.,
2013; Unmack and Minckley, 2008).

Permanent springs and ephemeral pools are often difficult to
find when hidden in rugged desert terrain (Shepard, 1993). There is
also some speculation by experts that many of the springs that do
exist are not currently known (Stevens and Meretsky, 2008). For
example, the number of springs mapped in the steep topography of
the Colorado Plateau, north of our study area, might be as low as 25
percent (Burke et al., 2002). Because these sites provide wildlife
with a critically limiting resource, resource managers need a thor-
ough and accurate inventory to make the most informed and
effective decisions.

Management of isolated and ephemeral waters will become
increasingly important as climate shifts stress surface-water
availability. We created a model that predicts the location of wa-
ter sites based on topological and geographic features including
topographical wetness and slope. This model provides a tool for
land managers in the Sonoran Desert and other arid regions to
better understand and evaluate the availability of aquatic resources.

2. Methods

2.1. Study area

This work was conducted at the Barry M. Goldwater Range e

East (BMGR-E) in southwestern Arizona, USA on land managed by
the U.S. Air Force's 56th Range Management Office (Fig. 1). The area
is actively managed for wildlife conservation and game species that
depend on water. This is a expanse of Sonoran Desert that includes
six mountain ranges separated by basins e elevations range from
approximately 60 me1220 m above mean-sea level. Habitat and
vegetation varies between mountain ranges, with creosote bush,
mixed-cacti, paloverde trees, and other mixed-scrub common
(Hardy and Morrison, 2000) along with patches of semi-arid
grasses occurring (Shreve, 1942). The range receives less than
12.7 cm (5 inches) of rain annually, often coming in one or a few
patchy events (BMGR INRMP, 2012). Summer temperatures
frequently reach and exceed 43 �C (110 �F) andwere recorded in the
field using iButton Hygrochron dataloggers (Maxim Integrated).
They recorded temperatures in part sun/part shade reaching over
56 �C (134 �F; unpublished data, J.C. Drake & J. Calvert, 2013).
Because of these high temperatures evaporation potentials exceed
rainfall (BMGR INRMP, 2012). Most surface water is available in
tinajas or desert wildlife catchments, which are constructed water
troughs connected to reservoirs of water (BMGR INRMP, 2012).
2.2. Predicted polygon generation

2.2.1. Generalized approach
To generate the predicted polygons we created a model using

Mahalanobis Distance analysis of spatial aspects of the landscape.
Mahalanobis distance can be used to quantitatively measure
landscape variables against ideal criteria to determine how closely
they resemble the ideal (Jenness, 2003). The ideal criteria in our
analysis are based on locations that already containwater. To create
our list of known existing waters, we combined water source point
data from the military base's datasets, excluding points that were
either unlabeled or labeled “catchment.” Because these points
indicated unknown and artificial water sources respectively, they
did not fit our criteria of confirmed natural water sources. We
excluded all of Arizona Game and Fish “Wildlife Waters” points
because they were all labeled “catchment.” The final sample point
dataset contained 148 points, each indicating an individual,
naturally-occurring water site. Spatial calculations were performed
in Esri's ArcGIS 9.3 software suite. The inputs to create the Maha-
lanobis Distance values were derived from Topographic Wetness
Index (TWI), and Longitudinal and Cross Sectional Curvature rasters
sampled at interpolated water location points in a region around
the BMGR-E. We then calculated the mean vector and covariance
matrix for variable values at known tinajas and modified tinajas on
the study area. Next, we calculated Mahalanobis Distance surfaces,
showing the similarity of all points on the landscape to the mean
vector and covariance matrix of TWI, Longitudinal Curvature and
Cross-Sectional Curvature for the known water sites. We identified
the �5% of the BMGR with the greatest similarity to the mean
vector of TWI and Curvature values. These are the regions with the
lowest Mahalanobis Distance values, meaning they are the most
similar to the water sites.
2.2.2. Correction of locations
Upon visual comparison of the sampled points in the GIS data-

base with aerial imagery (Esri's World Imagery map service and
Microsoft's Bing map service, both viewed in May, 2010), we
observed that many sites were shifted in various directions and
distances (max approximately 60 m) from visible water locations in
the imagery. This meant that either the coordinates of the waters
sites were inaccurate, the imagery was inaccurate, or the sites had
been moved since they were mapped. If the point locations are
inaccurate the method that we used, Mahalanobis distance would
use an incorrect underlying raster value. To correct for this, we
sampled the raster values around a point. We interpolated the 4
closest cells using a bilinear method to interpolate values vertically
then horizontally (Fig. 2). This was used to calculate both TWI and
curvature values.



Fig. 1. The study area (Area B) within the Barry M. Goldwater Range e East where the predictive model was applied to search for unknown ephemeral waters.
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2.2.3. Topographic Wetness Index
Topographic Wetness Index (TWI) was used as an input for the

calculation of Mahalanobis distance. TWI is a tool that can help
predict hydrological concentrations using the local upslope catch-
ment area and the local slope (Beven and Kirkby, 1979; Sørensen
et al., 2006). TWI is sometimes referred to as the Compound
Topographic Index (Moore et al., 1991). The general equation for
this metric is defined in Equation 1 (Beven and Kirkby, 1979;
Sørensen et al., 2006).

TWI ¼ ln
�
Specific Catchment Area

tan b

�
(1)

Where:
Specific Catchment Area ¼
 
Catchment Area

�
m2�

Unit Contour Length

!

tan b ¼ Percent slope

Equation 1 The generalized Topographic Wetness Index
Equation.
2.2.4. Specific catchment area
Catchment area, the contributing watershed that drains into a

point, was standardized to specific catchment area to differentiate
between catchments that drain to a single point versus catchments
that have an outlet. The specific catchment area gives a measure of
water force at the watershed boundary, so catchments that drain to



Fig. 2. Sampling the raster cells around the point location to counteract inaccurate
locations of waters. To compensate, we used bilinear interpolation to estimate the
value from the 4 closest cells. Values are first interpolated at the Y-coordinate of the
point location along the lines connecting the cell centers of cells A and C, and of cells B
and D. Then a final value is interpolated along the X-axis between these two inter-
polated values. In this case, the interpolated value of the point is approximately 4.31,
while the exact cell value of the point is 2.54.
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a point have higher topographic wetness values than catchments
that have outlets. We calculated specific catchment area by dividing
the contributing area by the length of a line representing the outlet
of that catchment (Equation 1). The length of this line was referred
to as the “unit contour length” in TWI literature (Beven and Kirkby,
1979; Sørensen et al., 2006). In raster analysis, this line is typically
understood to be the edge of a raster cell (Tarboton, 1997; Yang
et al., 2011).

We modified Tarboton's (1997) topographic wetness approach
to account for true ground surface area in order to get a more ac-
curate representation of water collecting surface within catchment
areas. Our source elevation data was a 1 Arc-Second raster DEM
(roughly 30 m resolution on the ground) downloaded in May, 2010
from the National Elevation Dataset (Gesch, 2007; Gesch et al.,
2002). We used the ArcGIS extension DEM Surface Tools (Jenness,
2010) to calculate true surface area over the landscape, and used
this surface area rather than planimetric area in the TWI equation.

Because we used latitude and longitude data, the raster cells are
trapezoids rather than squares, with cell heights greater than cell
widths, and therefore do not have a single edge length to divide by.
Hence, we defined the denominator (Equation 1) as the square root
of the planimetric trapezoidal area. If the cells were squares, as in a
traditional projected raster, then the square root of the area is the
traditional cell size and thus would be equivalent to Tarboton's
approach. We calculated the planimetric area of the trapezoidal
cells using DEM Surface Tools (Jenness, 2010) and then calculated
the square root of the all the cells using the ArcGIS Raster Calcu-
lator. We then calculated a “Specific Area per Cell” raster by
dividing the surface area raster by the square-root-of-planimetric-
area raster.

The numerator to Specific Catchment Area (Equation 1) is the
total catchment area in square meters. To calculate this, we per-
formed a weighted flow accumulation analysis using the ArcGIS
Flow Accumulation tool. This calculated the accumulated upslope
area for all raster cells, with each cell weighted by the “Specific Area
per Cell” value for that cell. By weighting those upstream cells by
the “Specific Area per Cell” values, the resulting flow accumulation
raster provides the specific catchment areas that contribute to each
cell.

Because the Flow Accumulation tool only gives the accumula-
tion that contributes to each cell, cells with no contributing area
consequently have a 0-value for specific catchment area. We
considered the area within the cell itself as contributing to the flow
of that cell, so we added the “Specific Area per Cell” values to the
flow accumulation values to produce the final specific catchment
area raster.

We calculated Percent Slope using the 4-cell method on lati-
tude/longitude data using DEM Surface Tools (Jenness, 2010)
(Fig. 1). We used the 4-cell method rather than the standard ArcGIS
8-cell method because it is marginally more accurate (Jones, 1998),
and we calculated slope on the original unprojected DEM in order
to avoid projection distortion and loss of precision.

To calculate the final TWI raster (Equation 1), we first inverted
our slope raster using the Invert Raster tool (Jenness et al., 2010).
Following an example by the USGS (2006), we added 0.0001 to the
slope values in order to avoid division by zero errors in the final
raster. We then multiplied our inverted percent slope raster by our
specific catchment area raster. Finally, we took the natural log of the
quantity to get the final TWI raster.

2.2.5. Longitudinal and cross-sectional curvature
In addition to TWI, we used longitudinal and cross-sectional

curvature data in our Mahalanobis analysis. We used DEM Sur-
face Tools “Curvature” (Jenness, 2010) to calculate both curvatures.
Longitudinal curvature is similar to the curvature of a line of
intersection between: 1) the landscape surface, and 2) a vertical
plane oriented in the direction of steepest slope (i.e. aspect) (Porres
de la Haza and Pardo Pascual, 2002; Wood, 1996; Zevenbergen and
Thorne, 1987) and should be interpreted the same as the standard
ArcGIS “Profile” curvature. Cross-sectional curvature is similar to
the curvature of the line of intersection between: 1) the landscape
surface and 2) a horizontal plane (i.e. the curvature of a contour
line) (Porres de la Haza and Pardo Pascual, 2002; Wood, 1996;
Zevenbergen and Thorne, 1987) and should be interpreted the
same way as ArcGIS “Plane” curvature. We used the DEM Surface
Tools extension rather than the standard ArcGIS functions because
our DEM was in a geographic coordinate system, and ArcGIS does
not calculate curvature correctly with this type of data. This tool
also allowed us to avoid projection distortion. These outputs were
then used for the Mahalanobis distance analysis.

2.2.6. Mahalanobis Distance analysis
We computed Mahalanobis Distance values for every raster cell

in the BMGR-E using the Mahalanobis Distance component of the
Land Facet Tools ArcGIS extension (Jenness et al., 2010). These
Mahalanobis Distance values numerically describe how similar
each cell is to known tinaja locations based on the TWI, Longitu-
dinal and Latitudinal Curvatures in each cell, compared to the
average TWI and curvature values at our known tinajas (Clark et al.,
1993; Knick and Dyer, 1997; Farber and Kadmon, 2003).

We initially identified the 2.47% of the BMGR-Ewith the greatest
similarity to the mean vector of TWI and Curvature values. These
are the regions with the lowest Mahalanobis Distance values,
meaning they are the most similar to the known water sites. We
identified this final region by using the ArcGIS “Less Than or Equal”
tool to query for regions meeting progressively lower Mahalanobis
threshold values until less than 2.5% of the BMGR-E was selected.
Upon completion, our map of potential sites covered 2.47% of the
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BMGR-E and was composed of raster cells that had Mahalanobis
Distance values �0.292.

Unfortunately for future potential field work, many of the areas
identified in this first pass were diffuse clouds of isolated single
raster cells. Therefore we restricted our analysis to areas with high
densities of raster cells.

We used the “Calculate Density Surface” tool (Jenness et al.,
2010) to calculate the density of these raster cells in a 5-cell
radius circular neighborhood (radius z 150 m, n ¼ 81 pixels). We
then identified all regions with a density >¼ 15% (i.e. >¼ 12 cells of
“best” Mahalanobis values in 81-cell neighborhood) and generated
a polygon feature class of these using the ArcGIS tool “Raster to
Features”. Finally, to reduce our field testing to a manageable size,
we deleted all polygons smaller than 5 ha. These cutoff thresholds
are arbitrary, but helped screen out isolated raster cells and allowed
us to focus on clusters of pixels in close proximity to each other.

Our final polygon feature class was composed of 39 polygons of
potential water locations within Area B of the BMGR-E study area
(Fig. 3).
Fig. 3. “Area B” study area within the BMGR-E near Ajo, AZ, USA wit
2.3. Random site generation

To assess the ability of the model to predict water locations,
we compared the predicted polygons to randomly generated
polygons by ground-truthing locations. To create random poly-
gons, we took the total area in the predicted polygons and
divided it by the number of predicted polygons such that we
sampled the same number and total area of polygons in both the
predicted and random classes. We created 39 circular polygons of
7.2 ha each, using custom VBA code in ArcGIS. We also con-
strained the location of the random polygons using the following
criteria: (1) they must not overlap predicted polygons or existing
known water sources; (2) they must lie within the area of BMGR-
E known as “Area B; ” and (3) they are within 1.5 miles of roads.
These last two criteria were necessary for addressing access is-
sues to the study sites during the study period. We ended up
with a total of 39 random polygons and 39 predicted polygons
within the study area for a total of 78 polygons to be sampled
(Fig. 3).
h 39 predicted and 39 random polygons created via our model.



Table 1
Results of searching for previously unknown ephemeral water sites in Area B of
BMGR-E using a new predictive analysis of topographic features compared to
random searches.

Predicted Random

Water capacity total (liters) 746,142.2 4279.4
Mean capacity (liters) 19,635.3 115.7
Standard error (liters) 14,110.1 64.1
Polygons searched 38 37
Total sites (absent and present) 58 43
Sites with water features 34 12
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2.4. Ground-truthing

We ground-truthed polygons during the summer of 2012. Using
DNRGPS (MDNR, 2012), a free software application developed by
Minnesota's Department of Natural Resource, we imported the lo-
cations of the polygons from ArcMap to the GPS handsets (GARMIN
GPSmap 60CSx). We searched polygons on foot by systematically
modifying the search pattern based on landscape and vegetation
cover. The objective was to cover the entire polygon with a com-
plete visual search of the ground for sites that could be considered
aquatic resources. Aquatic resources or “sites” are here defined as
those areas that either: 1) actually have water present, or 2) have
the ability to retain water at the location based on evidence at the
site. Researchers carried GPS handsets and followed a search
pattern that covered the entire area of each polygon with parallel
search lines no farther than 10 m apart from each other using GPS
tracking and ground based landmarks to insure complete coverage.
Searches were modified to accommodate reduced lines of sight
when dense vegetation or other geographic features impaired
them. Sometimes the search lines were reduced to a little as 3 m
apart to insure a complete visual search of the areawithin polygons.
Some polygons contained more than one distinct water-retaining
site. In this case, each individual site was recorded. Sites without
water retention possibility were recorded as water site absent. This
was done for both predicted and random polygons.When a sitewas
discovered, measurements of size and depth were taken with open
reel field measuring tapes and rulers. Water capacity for discovered
sites was determined using the equation for the volume of half an
ellipsoid (Equation 2).We used aminimumvolume of 5 L calculated
using Equation 2 to define locations as viable aquatic sites. Sites
that did not have at least a 5 L storage capacity were excluded from
count and analysis. Any sign or evidence of animal use was also
noted for each discovered site.

V ¼ 0:5
�
4
3
pabc

�
(2)

Equation 2 Volume of half an ellipsoid, where a and b are the
radii of length and width respectively; and c is the depth of the
water surface feature.

2.5. Data analysis

Once the data were collected and accumulated, a contingency
table analyses and likelihood ratios were performed in SPSS on the
datasets between the prediction and random datasets to determine
the model's success in finding water (SPSS version 21.0.0.0). To
reduce the risk of not predicting waters where they might exist, we
used a ¼ 0.1. Data were analyzed using three different approaches.
The first and most coarse analysis was performed by looking at
success of the model at the polygon level; polygons either con-
tained water or they did not. The second method compared the
number of sites discovered per each type of polygon. The third
method determined the success of the model by the total volume of
water at sites found within each type of polygon.

3. Results

75 polygons were searched and of these, 38 were predicted
polygons and 37 were random polygons. Three polygons could not
be searched due to access and timing limitations. When we
searched the polygons, 15 of the 38 (39.5%) predicted polygons
contained water or water retaining features, and 10 of the 37
(27.0%) random polygons contained water or water retaining fea-
tures. It was possible for each polygon to contain more than one
feature or none at all. There were 58 total sites within the predicted
polygons designation and 43 within the random. These included
sites where water retaining features were present and sites where
no water retaining features were present. Out of the total predicted
sites, 34 contained at least one water-retaining feature and 24 were
absent of these aquatic resources. Within the random polygons,
only 12 of the 43 sites showed signs of aquatic resources or water
retention capabilities. Another way to address the differences be-
tween random and predicted polygons and the features they con-
tained was the amount of water available to wildlife. The total
volume of water capacity found in predicted sites far exceeded the
volume found at random sites (Table 1).

Our model correctly predicted water approximately 60% of the
time, with only 26% of the total aquatic resources being discovered
at random. In the first analysis, predicted success compared against
random success of finding polygons containing water was not
significantly different (c2 ¼ 1.3, df ¼ 1, p ¼ 0.2). The second analysis
of the data, using the number of water sites found per polygon,
showed the predictedmodel discovered significantly more sites per
polygon than at random based on their likelihood ratio (c2 ¼ 8.5,
df ¼ 1, p ¼ 0.1). Of the sites found to contain water retention fea-
tures, approximately 74% of these were attributed to the polygons
denoted by the predictive model (Table 1). Analysis of the model
success based on volume of water capacity found was strongest
(c2 ¼ 36.5, df ¼ 26, p ¼ 0.08). The model found a significantly
greater amount of water, over two orders of magnitude greater,
within the predicted polygons than in the random polygons
(Table 1).

Approximately 63% of water sites found had some indication of
wildlife use present. We observed tracks, scat, animal remains, and
disturbed vegetation. We also saw invertebrates, amphibians,
reptiles, and birds all using waters before we approached some
discovered sites. Examples of wildlife water use we observed
include, but are not limited to: clam shrimp, Eulimnadia texana,
using small sites for their life cycles (Marcus andWeeks,1997); red-
spotted toad, Anaxyrus punctatus, choruses; desert bighorn sheep,
Ovis Canadensis, using sites for hydration; tadpoles from genera
including Incillius, Anaxyrus, and Scaphiopus developing in the
waters; birds thermoregulating in the waters (Steen and Steen,
1965); predators hunting (Destefano et al., 2000); animals, like
coachwhip snakes from the Coluber bilineatus and Coluber flagellum
complex, using water sites as a temporary refuge (J. Drake, J. Cal-
vert; personal observation); and the use of water sites for dispersal
by backswimmers, Notonecta glauca (Schwind, 1984) and other
aquatic invertebrates.
4. Discussion

Our model was successful at finding aggregations of water sites
that contain a greater volume of water than was found randomly.
The predicted polygons contained features that could hold or were
holding approximately 746 kl of water as compared to the random
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polygon total water retention capacity of approximately 4.3 kl, this
is over 2 orders of magnitude more water. These are large biolog-
ically significant differences in an environment that is extremely
water-limited. Water sites that are large and stable are better
candidates for management as wildlife waters. Although also
important for biodiversity (Souza et al., 2006), smaller water
pockets may not be large enough for land managers to efficiently
manage as wildlife waters.

Desert areas have been searched for larger waters both on foot
and by air, but we still have not found all the larger water sites as
evidenced by our model's success. Applying our model, we iden-
tified 12 polygons (34%) with over a kiloliter of water and 4 poly-
gons (10%) with over 10 kl of water.We described a large site new to
managers that now will be included in the management of water
for wildlife in this area (Fig. 4). This sitewas a tinaja, a depression in
a rocky substrate that can retain water, and is approximately 1 m
deep, 3 m wide, and 5 m long. Being composed of rock on 3 sides
and on the basin's bottom, it is exceptionally resistant to water loss
from seepage through the ground. It is dammed by gravel and rock
on the remaining side. A small amount of vegetation and the steep
nature of the sides provided shade, which helps minimize evapo-
ration. Also the shape of the tinaja was conducive to water reten-
tion, because the steeper basin sides led to less surface area
exposed to evaporation losses. This larger basin was the main area
of water retention in a series of smaller sites along the drainage.
This site contained many signs of wildlife use. It contained red-
Fig. 4. Aquatic resource discovered by our predictive model that was previously un-
known to range managers in Area B of the BMGR-E. Range managers will now be able
to include this water in the management of water resources for wildlife. The predictive
model identified more areas that contained similar water sites like this than random
searches did.
spotted toads in four different life states; large mammal tracks;
bird feathers; honeybees, Apis mellifera complex; spiders, flies and
butterflies; Stratiomyidae larvae; and human foot traffic (trash and
campfire remains). This was not the only site discovered among the
predicted polygons that could be managed for wildlife, but it was a
good example of what was found.

Many of the smaller sites present are only usable for short du-
rations, likely on the scale of less than 48 h. For some species this is
of limited use, but for others, it can be enough to accomplish
necessary natural history events. Some aquatic invertebrates can
grow, breed, reproduce, and lay encysted-embryos within the short
window provide by these sites (Marcus and Weeks, 1997). Others
like Couch's spadefoot toads, Scaphius couchii, have plastic devel-
opmental rates during larval stages, as short as 8 days, which allows
them to take advantage of water sites that are extremely ephemeral
(Newman, 1988). These short-lived sites can also provide wide-
ranging animals like desert bighorn sheep, endangered Sonoran
Pronghorns, mule deer, mountain lions, and birds important
opportunistic water resources.

Connectivity of desert water sites is necessary for wildlife
dispersal which functions in maintaining gene flow and providing
organisms the ability to use scarce resources across the landscape.
By identifying previously unknown waters, managers can enhance
the ability of the water sites to promote connectivity for wildlife
species of interest. As connectivity is dependent on each species
dispersal capabilities, multiple scales of connectivity need to be
considered when managing a landscape. Maintaining these water
resources can help prevent or mitigate the effects of habitat frag-
mentation, habitat loss, and climate change. Losing connectivity
between populations and patches of habitat can prevent the
dispersal of animals to suitable habitat areas and lead to local ex-
tinctions (Fahrig and Merriam, 1994). Finding and managing
ephemeral waters helps increase a system-wide resilience by
identifying areas that animals will be more likely to utilize for
movement. These areas can then be managed to sustain connec-
tivity between habitat patches and populations at multiple scales.

Our predictive modeling can be an important tool for land
managers in arid terrain. Existing water resources are currently
scarce, and climate change and population growth in the American
Southwest may increase water-related stress to desert ecosystems.
The addition of existing aquatic resources to the manager's in-
ventory can allow a more appropriate distribution of time, effort,
and funds towards conservation efforts. In the Sonoran Desert, for
example, the Arizona Game and Fish Department manages man-
made catchments in remote regions for wildlife use. If more natural
water sites were known, it would allow better planning for man-
made catchment additions to the landscape. Identifying naturally
occurring tinajas, that could be modified to increase storage ca-
pacity and reduce evaporation loss, could provide an alternative
solution to making anthropogenic catchments while still achieving
many of the same results. This would help reduce the need to haul
water to new artificial catchments if there is still naturally occur-
ring water available for wildlife. Hauling water to artificial catch-
ments by truck cost an average of $144,000 a year between 1996
and 2001 in Arizona alone (Bloom, 2003).

This successful model was specific for the study site; however,
our method for generating the model could be applied to other
areas, especially in arid regions where water is such a limiting
resource. By adjusting site-specific inputs and parameters to suit
the needs of the areas of interest, this model can provide a strong
and insightful new addition to a land manager's toolkit. The
ground-truthing component of this tool is labor intensive, but in
areas where water resources are limited or projected to become
more limited, the labor is likely a good investment of resources.
Application of this technique across different arid regions and
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landscapes should be performed to help provide better insight to
the availability of aquatic resources that are generally overlooked
by previous means and inventories.

Acknowledgments

We thank the 56th Range Management Office of Luke Air Force
Base for funding, providing maps, data, and other technical support
and for help coordinating field schedules with military operations.
We also thank T. Raspiller and D. Urquidez (Arizona Game and Fish
Department) and T. Calvert for their assistance with this project.
This is manuscript number T-9-1258 of the College of Agricultural
Sciences and Natural Resources, Texas Tech University.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.jaridenv.2015.02.018.

References

Ackerman, F., Stanton, E., 2011. The Last Drop: Climate Change and the Southwest
Water Crises. Somerville Available at: http://www.sei-us.org/publications/id/
371 [Accessed March 10, 2014].

Beven, K.J., Kirkby, M.J., 1979. A physically based, variable contributing area model
of basin hydrology/Un mod�ele �a base physique de zone d'appel variable de
l'hydrologie du bassin versant. Hydrol. Sci. Bull. 24 (1), 43e69.

Bloom, F., 2003. Wildlife Water Development Team Report, 2002: Final Version.
Arizona Game and Fish Department, Phoenix.

BMGR-INRMP, 2012. Barry M. Goldwater Range Integrated Natural Resources
Management Plan 2012 Update. Barry M. Goldwater Range. Available at: http://
www.luke.af.mil/shared/media/document/AFD-130823-073.pdf.

Burke, K., et al., 2002. Arizona Strip Spring, Seeps and Natural Ponds: Inventory,
Assessment, and Development of Recovery Priorities. Flagstaff, AZ. Available at:
http://springstewardship.org/PDF/ASSPfinal report 020430.pdf.

Carpenter, M., 1999. South-Central Arizona: earth fissures and subsidence compli-
cate development of desert water resources. In: Galloway, D., Jones, D.,
Ingebritsen, S. (Eds.), Land Subsidence in the United States: US Geological
Survey Circular 1182, pp. 65e78. Reston.

Clark, J., Dunn, J., Smith, K., 1993. A multivariate model of female black bear habitat
use for a geographic information system. J. Wildl. Manag. 57 (3), 519e526.

Destefano, S., Schmidt, S., deVos Jr., J., 2000. Observations of predator activity at
wildlife water developments in Southern Arizona. J. Range Manag. 53 (3),
255e258.

Fahrig, L., Merriam, G., 1994. Conservation of fragmented populations. Conserv. Biol.
8 (1), 50e59.

Farber, O., Kadmon, R., 2003. Assessment of alternative approaches for bioclimatic
modeling with special emphasis on the Mahalanobis distance. Ecol. Model. 160.

Field, C.B., et al., 2007. 2007: North America. In: Parry, M.L., et al. (Eds.), Climate
Change 2007: Impacts, Adaptation and Vulnerability. Cambridge University
Press, Cambridge, pp. 617e652. Contribution of Working Group II to the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change.

Gesch, D.B., 2007. The national elevation dataset. In: Maune, D.F. (Ed.), Digital
Elevation Model Technologies and Applications: the Dem Users Manual.
American Society for Photogrammetry and Remote Sensing, pp. 99e118.

Gesch, D.B., et al., 2002. The national elevation dataset. Photogramm. Eng. Remote
Sens. 68 (1), 5e32.

Glick, P., Stein, B., 2010. Scanning the Conservation Horizon: a Guide to Climate
Change Vulnerability Assessment (Washington, D.C.).

Goodrich, G.B., Ellis, A.W., 2008. Climatic controls and hydrologic impacts of a
recent extreme seasonal precipitation reversal in Arizona. J. Appl. Meteorol.
Climatol. 47 (2), 498e508.

Griffis-Kyle, K.L., Kovatch, J.J., Bradatan, C., 2014. Water quality: a hidden danger in
anthropogenic desert catchments. Wildl. Soc. Bull. 38 (1), 148e151.

Hardy, P., Morrison, M., 2000. Factors affecting the detection of elf owls and western
screech owls. Wildl. Soc. Bull. 28 (2), 333e342.

Hendrickson, D., Minckley, W., 1985. Cienegas: vanishing climax communities of the
American Southwest. Desert Plants (USA) 6, 130e176.

Jenness, J., 2010. DEM Surface Tools for ArcGIS (surface_area.exe). Jenness Enter-
prises. Available at: http://www.jennessent.com/arcgis/surface_area.htm.
Jenness, J., 2003. Mahalanobis Distances (mahalanobis.avx) Extension for ArcView
3.x. Jenness Enterprises, pp. 1e2. Available at: http://www.jennessent.com/
arcview/mahalanobis.htm [Accessed April 10, 2014].

Jenness, J., Brost, B., Beier, P., 2010. Land Facet Corridor Designer: Extension for
ArcGIS. Jenness Enterprises. Available at: http://www.jennessent.com/arcgis/
land_facets.htm.

Jones, K., 1998. A comparison of algorithms used to compute hill slope as a property
of the DEM. Comput. Geosci. 24 (4), 315e323.

Karl, T., Melillo, J., Peterson, T. (Eds.), 2009. Global Climate Change Impacts in the
United States. Cambridge University Press, Cambridge. Available at: www.
globalchange.gov/usimpacts [Accessed March 17, 2014].

Knick, S., Dyer, D., 1997. Distribution of black-tailed jackrabbit habitat determined
by GIS in southwestern Idaho. J. Wildl. Manag. 61 (1), 75e85.

Konikow, L.F., 2013. Groundwater Depletion in the United States (1900 e 2008):
Scientific Investigations Report 2013 e 5079. USGS Report. Available at: http://
pubs.usgs.gov/sir/2013/5079.

Marcus, V., Weeks, S., 1997. The effects of pond duration on the life history traits of
an ephemeral pond crustacean, Eulimnadia texana. Hydrobiologia 359,
213e221.

MDNR, 2012. DNRGPS Application. Available at: http://www.dnr.state.mn.us/mis/
gis/DNRGPS/DNRGPS.html [Accessed December 7, 2012].

Minckley, T.A., Turner, D.S., Weinstein, S.R., 2013. The relevance of wetland con-
servation in arid regions: a re-examination of vanishing communities in the
American Southwest. J. Arid Environ. 88, 213e221.

Moore, I., Grayson, R., Ladson, A., 1991. Digital terrain modelling: a review of hy-
drological, geomorphological, and biological applications. Hydrol. Process. 5,
3e30 (September 1990).

Newman, R., 1988. Adaptive plasticity in development of Scaphiopus couchii tad-
poles in desert ponds. Evolution 42 (4), 774e783.

Patten, D.T., Rouse, L., Stromberg, J.C., 2008. Isolated spring wetlands in the Great
Basin and Mojave deserts, USA: potential response of vegetation to ground-
water withdrawal. Environ. Manag. 41 (3), 398e413.

Porres de la Haza, M., Pardo Pascual, J., 2002. Comparison between the different
curvature models of terrain for determining the degree of soil humidity. In:
Recent Advances in Quantitative Remote Sensing, p. 238.

Rosenstock, S., et al., 2004. Studies of Wildlife Water Developments in South-
western Arizona: Wildlife Use, Water Quality, Wildlife Diseases, Wildlife Mor-
talities, and Influences on Native Pollinators. Available at: http://azgfd.com/
pdfs/w_c/research/Res_BranchTech Bulletin No8.pdf [Accessed March 7, 2014].

Schwind, R., 1984. The plunge reaction of the backswimmer Notonecta glauca.
J. Comp. Physiol. A 155, 319e321.

Seager, R., et al., 2007. Model projections of an imminent transition to a more arid
climate in southwestern North America. Science 316 (5828), 1181e1184.

Shepard, W., 1993. Desert springs-both rare and endangered. Aquat. Conserv.: Mar.
Freshw. Ecosyst. 3 (4), 351e359.

Shreve, F., 1942. The desert vegetation of North America. Bot. Rev. 8 (4), 195e246.
Sørensen, R., Zinko, U., Seibert, J., 2006. On the calculation of the topographic

wetness index: evaluation of different methods based on field observations.
Hydrol. Earth Syst. Sci. 10 (1), 101e112. Available at: http://www.hydrol-earth-
syst-sci.net/10/101/2006/.

Souza, V., et al., 2006. An endangered oasis of aquatic microbial biodiversity in the
Chihuahuan desert. Proc. Natl. Acad. Sci. U. S. A. 103 (17), 6565e6570.

Steen, I., Steen, J., 1965. The importance of the legs in the thermoregulation of birds.
Acta Physiol. Scand. 63 (3), 285e291.

Stevens, L.E., Meretsky, V.J., 2008. Spring ecosystem ecology and conservation. In:
Stevens, L.E., Meretsky, V.J. (Eds.), Aridland Springs in North America. University
of Arizona Press, Tucson, pp. 3e10.

Swanson, G.J., 1989. Harvesting ground water: the west's newest crop. Water Well J.
43, 54e57.

Tarboton, D., 1997. A new method for the determination of flow directions and
upslope areas in grid digital elevation models. Water Resour. Res. 33 (2),
309e319.

Unmack, P.J., Minckley, W., 2008. The demise of desert springs. In: Stevens, L.E.,
Meretsky, V.J. (Eds.), Aridland Springs in North America. University of Arizona
Press, Tucson, pp. 11e34.

USGS, 2006. HYDRO1k Documentation. U.S. Geological Survey. U.S. Department of
the Interior. Available at: http://eros.usgs.gov/#/Find_Data/Products_and_Data_
Available/gtopo30/README [Accessed July 21, 2010].

Wood, J., 1996. The Geomorphological Characterisation of Digital Elevation Models.
University of Leicester.

Wright, J.T., 1959. Desert Wildlife - Wildlife Bulletin No. 6. Phoenix.
Yang, X., et al., 2011. The scaling method of specific catchment area from DEMs.

J. Geogr. Sci. 21 (4), 689e704.
Zevenbergen, L.W., Thorne, C.R., 1987. Quantitative analysis of land surface topog-

raphy. Earth Surf. Process. Landf. 12, 47e56.

http://dx.doi.org/10.1016/j.jaridenv.2015.02.018
http://dx.doi.org/10.1016/j.jaridenv.2015.02.018
http://www.sei-us.org/publications/id/371
http://www.sei-us.org/publications/id/371
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref2
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref2
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref2
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref2
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref2
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref2
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref3
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref3
http://www.luke.af.mil/shared/media/document/AFD-130823-073.pdf
http://www.luke.af.mil/shared/media/document/AFD-130823-073.pdf
http://springstewardship.org/PDF/ASSPfinal%20report%20020430.pdf
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref6
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref6
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref6
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref6
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref6
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref7
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref7
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref7
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref8
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref8
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref8
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref8
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref9
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref9
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref9
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref10
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref10
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref11
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref11
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref11
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref11
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref11
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref12
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref12
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref12
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref12
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref13
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref13
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref13
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref14
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref14
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref15
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref15
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref15
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref15
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref16
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref16
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref16
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref17
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref17
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref17
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref18
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref18
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref18
http://www.jennessent.com/arcgis/surface_area.htm
http://www.jennessent.com/arcview/mahalanobis.htm
http://www.jennessent.com/arcview/mahalanobis.htm
http://www.jennessent.com/arcgis/land_facets.htm
http://www.jennessent.com/arcgis/land_facets.htm
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref22
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref22
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref22
http://www.globalchange.gov/usimpacts
http://www.globalchange.gov/usimpacts
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref24
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref24
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref24
http://pubs.usgs.gov/sir/2013/5079
http://pubs.usgs.gov/sir/2013/5079
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref26
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref26
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref26
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref26
http://www.dnr.state.mn.us/mis/gis/DNRGPS/DNRGPS.html
http://www.dnr.state.mn.us/mis/gis/DNRGPS/DNRGPS.html
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref28
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref28
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref28
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref28
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref29
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref29
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref29
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref29
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref30
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref30
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref30
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref31
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref31
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref31
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref31
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref32
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref32
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref32
http://azgfd.com/pdfs/w_c/research/Res_BranchTech%20Bulletin%20No8.pdf
http://azgfd.com/pdfs/w_c/research/Res_BranchTech%20Bulletin%20No8.pdf
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref34
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref34
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref34
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref35
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref35
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref35
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref36
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref36
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref36
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref37
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref37
http://www.hydrol-earth-syst-sci.net/10/101/2006/
http://www.hydrol-earth-syst-sci.net/10/101/2006/
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref39
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref39
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref39
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref40
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref40
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref40
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref41
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref41
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref41
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref41
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref42
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref42
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref42
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref43
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref43
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref43
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref43
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref44
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref44
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref44
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref44
http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30/README
http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30/README
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref46
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref46
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref47
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref48
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref48
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref48
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref49
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref49
http://refhub.elsevier.com/S0140-1963(15)00054-3/sref49

	Testing a model for the prediction of isolated waters in the Sonoran Desert
	1. Introduction
	2. Methods
	2.1. Study area
	2.2. Predicted polygon generation
	2.2.1. Generalized approach
	2.2.2. Correction of locations
	2.2.3. Topographic Wetness Index
	2.2.4. Specific catchment area
	2.2.5. Longitudinal and cross-sectional curvature
	2.2.6. Mahalanobis Distance analysis

	2.3. Random site generation
	2.4. Ground-truthing
	2.5. Data analysis

	3. Results
	4. Discussion
	Acknowledgments
	Appendix A. Supplementary data
	References


